
40 IT Pro July ❘ August 2004 1520-9202/04/$20.00 © 2004 IEEEP u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Project Estimation:
A Simple
Use-Case-Based Model

Ray Ashman

S oftware development estimates are, and
continue to be, inaccurate. Overly opti-
mistic estimates are major contributors
to project failure, despite the fact that

every completed project is a rich source of infor-
mation about performance and estimation.

Modern development processes, such as the
IBM Rational Unified Process,promote risk man-
agement, the realization of architecture first, the
decomposition of the project into iterations, and
the assignment of requirements to these itera-
tions. When a project adopts these forms of best
practice, it achieves a high degree of technical
control, which in turn makes for easier manage-
ment. One difficult project management task that
remains, however, is to accurately determine the
effort required to complete the project.

Here, I discuss a use-case-based estimation
model for determining project effort. This tech-
nique calls for looking at the relationship between
estimated and actual data, then using this infor-
mation to improve future estimates. Using a sim-
ple set of metrics, it is possible to generate a
credible model for project estimation.The model
described here works best in an iterative devel-
opment process, allowing comparisons between
successive iterations. It thereby presents early
feedback about each iteration’s performance.

HOW EFFECTIVE IS YOUR ESTIMATE?
Cost and time overruns are common within

software development. When project managers
understand little about the requirements or the
challenges ahead, they often present estimates
with a stated accuracy on the order of 20 percent.

These excessively optimistic estimates inflate the
global failure rates for software projects. Actual
overruns, identified in the Chaos Report (The
Standish Group, 1994), make sober reading.

For example, fewer than 28 percent of projects
fall into the type 1 category, the best of three proj-
ect resolution types used in this report:

• Type 1, successful. These projects are on time,
on budget, have all the original features, and
function as initially specified.

• Type 2, challenged. Although completed and
operational, these projects are over budget,
over time, and have fewer features and func-
tions than originally specified.

• Type 3, impaired. The project is cancelled at
some point during the development cycle.

Tables 1 and 2 come from this report and sup-
port the argument for more realistic estimates, or
at least that a wider margin of error should
accompany an estimate. In accounting for chal-
lenged and impaired projects, the average cost
overrun was 178 percent for large companies, 182
percent for medium companies, and 214 percent
for small companies. Challenged and impaired
projects had average time overruns of 230 per-
cent for large companies, 202 percent for medium
companies, and 239 percent for small companies.
Recent reports indicate no significant change in
the percentage of overruns.

The ability to accurately estimate a project in
terms of cost and time is a skill that evidently
eludes many project managers. Yet every com-
pleted project is a potential source of informa-

Iterative development offers
several opportunities to apply a
simple use-case-based measure
of project performance.

July ❘ August 2004 IT Pro 41

tion: data on the project’s behavior, the problems encoun-
tered along the way, and the overall cost. Unfortunately,
this information often goes unnoticed, and its value,
ignored. Using it could make possible much more accu-
rate estimates.

WHAT TO MEASURE
For this model, I categorize measurement into three

types. The first two types are associated with the product
and the last one with time. Although I’ve separated the
product measurement types, they are inextricably linked
because each has an effect on the other.

• Scheduled measurements. These encompass estimates of
cost and resource.These measures are generally under-
stood and are normally the focus of the project planning
efforts.

• Unscheduled measurements. Unscheduled measure-
ments cover areas such as rework, requirements change,
and other alterations to the project.They are difficult to
predict and therefore rely on risk estimation to provide
a degree of management.

• Time. This is a reference for trend and difference meas-
urements. Unless a metric is measuring quantity only, it
will require time as a common reference for comparative
measurement.An important factor to consider in using
time is its granularity, because the granularity selected
dramatically affects the volume of data.Analyzing data
requires comparing like to like, which includes having
to standardize time measurements if the comparison
relies on a time coordinate. (That is, all data must use
the same sample rate, such as seconds, days, or weeks.)

With the three types of measurement identified, I can
construct a first-cut model for project estimation. Prior
to any modeling, you should state the aims of the exer-
cise. These aims will serve as a guide to recording the
degree of fit between the model results and reality, over
successive projects. My model’s aims are to be able to
capture the estimator’s experience and to increase the
accuracy of successive estimates based on repeatable
measurements.

ESTIMATION MODEL
Estimations based on project requirements provide the

simplest form of modeling, because project requirements
are readily available, and the derived estimates are easily
assessable at the end of the project. Moreover, interpro-
ject estimation refinement is possible in processes like the
iterative development life cycle, where the project realizes
requirements over several iterations. Using interproject
estimates in this way offers information for tracking cur-
rent project performance.This ability to compare estimates
with the actual outcome is crucial if estimation techniques
are to improve.

Within the iterative process, the project realizes its
requirements over several iterations.Each iteration’s struc-
ture follows the familiar waterfall disciplines of require-
ments, analysis, design, code, and test. With the project
decomposed into iterations, it is much easier to determine
progress and tolerate change. For an introduction to the
iterative development process see Philippe Kruchten’s
book on the Rational Unified Process (The Rational
Unified Process:An Introduction,Addison-Wesley, 2000).

When using the iterative process, it becomes possible to
refine some estimates during the project.This intraproject
refinement provides a fine-grained method of estimating,
based on actual experience within the project.This in turn
leads to increased awareness of the project’s state through-
out its life cycle.

One measure of an estimation model’s success is how
well successive estimates approximate actual project per-
formance. Improving estimates indicate that the model is
converging and has a degree of stability in that successive
estimates modify the estimation process and provide new
estimates of increased accuracy. Diverging successive esti-

Table 1. Reported cost overrun.

Respondents reporting
Cost overruns this level of overrun
(percentage) (percentage)

Under 20 15.5

20 to 50 31.5

51 to 100 29.6

101 to 200 10.2

201 to 400 8.8

Over 400 4.4

Table 2. Reported time overrun.

Respondents reporting
Time overruns this level of overrun
(percentage) (percentage)

Under 20 13.9

20 to 50 18.3

51 to 100 20.0

101 to 200 35.5

201 to 400 11.2

Over 400 1.1

CANDIDATE FOR MEASUREMENT
As stated earlier, estimations based on project require-

ments are an attractive candidate for modeling because
these requirements are readily available and easily assess-
able at the project’s end. However, because project
requirements take many forms, it is important to select a

requirement format that will allow individ-
uals to create requirements of consistent
quality,across all projects.This maintenance
of quality is difficult to achieve using tradi-
tional methods, because the requirement
format differs among individuals and busi-
nesses. Fortunately, one method that
reduces variability in quality and increases
format consistency is the use case, which
Alistair Cockburn effectively describes in
Writing Effective Use Cases (Addison-
Wesley, 2000).

A use case records a functional require-
ment in the form of a dialogue between the
user and the application. Each use case
focuses on the business, covers functional
requirements, is easily read by the business
user (because it is written in business terms),
and has a generally accepted format.

The use-case-based estimation model
aims to

42 IT Pro July ❘ August 2004

P R O J E C T M A N A G E M E N T

Identify
metrics

Create
model

Refine
metrics

Provide
estimate

Output
results

Compare
with reality

Figure 1. Model development life cycle.

When creating a model for estimation, do not try and create a com-
plex and detailed initial version. Rather, take a coarse-grained model
and refine it over several iterations. In this way, the model will evolve
to reflect the specific needs of your business and not become a com-
promised, generic model.

 ClearTime UseCase Estimation
 Date 22/05/2002
 How long How long How Developer Customer
 Developer Tester Difficult Complexity Split Priority Priority Order Iteration
 edit timesheet 4 2 5 y n 4 6 4
 stop activity 2 1 3 n n 2 2 2 1
 start activity 3 2 4 n n 1 1 1 1
X maintain favorites 4 2 6 n n 5 3 5
 maintain options 1 1.5 2 n n 8 7 7
 maintain activity sources 2 2 2 n n 7 9 8
 refresh activities 5 8 y n 3 4 3 2
X automatic time vault syn 4 2 8 y n 6 5 6
 show reminders 2 1 3 n n 9 8 9
 Total 19 9.5
X = not in this build

Figure 2. Use-case-based project estimation.

Breaking the project down into functional areas makes
estimating the time to realize the whole project easier.
Here, the functional areas take the form of use cases,
which are the elements for estimation. (The use cases
are the rows in the model.) The columns represent the
various activities and risks associated with each use case,

and the numbers in the first two columns are the esti-
mated days each use case will require for full develop-
ment and test. The totals in these two columns are the
estimates for development and test.Two use cases were
omitted from the planned build so are not included in
the estimation (they are shown in gray).

mates would characterize a poor model. If this were the
case, you would have to redesign the model.

Figure 1 shows the model development life cycle used
to refine the estimation technique. Using this form of iter-
ative refinement,you compare successive models with real-
ity, modifying the model to provide improved estimates.

July ❘ August 2004 IT Pro 43

• capture the experience of the specialists
doing the estimation,

• include disparate stakeholders in the
decision making, and

• enable a consensus on the agreed time-
scale.

This method not only increases the accu-
racy of measurement but also produces a
sense of shared ownership of the model
results.Figure 2 shows the format for a cur-
rent use-case-based estimation model.

Leveraging staff expertise
The model in Figure 2 serves two main

purposes. First, it uses the expertise of the
development and test staff to estimate
their effort across the various functional
requirements. A use case encompasses a
discrete and significant proportion of the
application’s functionality, therefore it is
easier to estimate effort using these large
functional chunks. This is because the
uncertainty associated with each use case is
well within the overall error expected for
this stage of the project. Overall errors of
50 to 75 percent are common for early proj-
ect estimates and,as the Chaos Report indi-
cated earlier, estimation error can be as much as 200
percent.The important point is that without measurement,
the errors in the estimates are unknown and can be sig-
nificantly larger than anyone might expect.Without meas-
urement, there is no history, so it becomes impossible to
gauge estimate accuracy for future projects.

Figure 3 shows the established error curve associated
with project estimates; the error is a function of project
unknowns. It is natural to expect that estimates will
improve as the project matures, because developers know
more about the product requirements, and project staff
members are aware of the issues as well as their abilities.
The generic project estimation convergence curve in
Figure 3 shows that increasing accuracy comes through
increased knowledge.

Assessing risk and facilitating agreement
Secondly, the model is helpful in assessing the risk asso-

ciated with each use case; it facilitates agreement among
stakeholders on the content of each iteration.When assign-
ing use cases to iterations, project managers should take
several considerations into account: the degree of risk asso-
ciated with a use case, its importance to the project,and the
resources required to complete its implementation. It is
preferable to assign difficult use cases to earlier iterations
because the highest risks will then reside in the first itera-
tions,and success in these iterations will significantly reduce

the project’s overall risk.This phenomenon is a product of
iterative software development;use-case-based estimation
aids the identification and assignment of use cases to iter-
ations and therefore promotes early risk mitigation.

INTRAPROJECT REFINEMENT
In a waterfall process, comparisons typically take place

at the end of the project. However, in an iterative process,
project managers can make comparisons at the end of each
iteration. The result is a measure of the initial estimates’
accuracies. It is then possible to evaluate any risks associ-
ated with poor initial estimates and amend each iteration’s
content as the project progresses.This intraproject refine-
ment reduces risk to the project because project managers
can reschedule tasks based on quantifiable evidence as
opposed to using just intuition.

Figure 4 shows how to compare the captured actual
effort with the original estimates. For clarity, I call the unit
of measure for recording estimates a developer day. I
coined this term to distinguish estimated days of effort
from actual days because, when estimating effort, devel-
opers do not instinctively account for external project con-
siderations, such as milestone reviews and rework. By
comparing successive iterations of developer days with
actual days, I can derive a unit scaling factor (USF). This
factor shows the error in the estimates over the project’s
life. Figure 4 shows an example of how to calculate USF.

1.6×

1.15×

1×

0.8×

0.6×

4×

1.4×

1×

0.5×

0.25×Pr
o

je
ct

 c
o

st
 (

ef
fo

rt
 a

n
d

 s
iz

e)

Pro
ject sch

ed
u

le

Figure 3. Estimate convergence graph.

The graph, from Steve McConnell’s Rapid Development (Microsoft
Press, 1996), shows that estimates improve with knowledge. Here, it
is evident that as the project progresses along its life cycle, the esti-
mates improve in a nonlinear fashion. This graph is based on the
waterfall process but can still be valid for iterative development.
Reprinted with permission; all rights reserved. © Steve McConnell,
1996.

44 IT Pro July ❘ August 2004

P R O J E C T M A N A G E M E N T

COMMENTS ON USAGE
This model was created to provide a quantitative esti-

mation tool; it uses information readily available during
the project’s inception phase. Reestimating at the end of
each iteration improves the accuracy of estimates. As the
project progresses, it improves because developers gain a
greater understanding of the requirements and also
increase the accuracy of their estimates. The result is bet-
ter feedback on estimation performance (at least once
every iteration) and the ability to apply lessons learned to
the next iteration.This form of reestimation is a feature of
iterative development; this model simplifies such reesti-
mations.

When producing the first-cut estimate, the entire
development team became involved the process. We
thought that this would create consensus and produce a
process that tolerated the biases of individual team mem-
bers.

We have also found that large USF values indicate
potential problem areas. In those cases, the USF values
also provide information relevant to the reordering of con-
tents in each iteration.

W e are now applying the techniques we’ve learned
creating this model to produce estimates for con-
tract bidding, an area notorious for a qualitative

approach to estimating cost and effort.
Project estimation cannot be effective without measure-

ment. The simple techniques described here allow you to
document experience and use it to improve future meas-
urement.The model provides information for project man-
agers during inception and throughout the project life cycle.

It’s important to resist seeing estimates as accurate point
values. An estimate reflects a project manager’s current
understanding of the project and its perceived risks at that
point in time. Often, project managers provide estimates as
a range of values,using the upper and lower values to reflect
their uncertainty. Unfortunately, the recipient of this esti-
mation invariably selects a value that suits himself;he fails to
grasp the meaning in the estimate range until it is too late.�

Ray Ashman is a senior consultant at FMI Solutions. Con-
tact him at ray.ashman@fmisolutions.com.

 Unit Scaling Factor 1.20 1.28 1.14 1.03 1.52 1.50
 Projected Time for project in days 52.80 56.10 50.29 45.16 67.05 66.00

 ClearTime Actual Time
 Date 19/07/2002
Iteration Functionality Iteration
 1 2 3 4 5 6
 3 edit timesheet 6.5 6.5 6.5 6.5
 1 stop activity 5 5 5 5 5 5
 1 start activity 7 7 7 7 7 7
 X maintain favorites 0 0 0 0 0 0
 6 maintain options 2
 5 maintain activity sources 25 25
 2 refresh activities 13.5 13.5 13.5 13.5 13.5
 X automatic time vault syn 0 0 0 0 0 0
 4 show reminders 3.5 3.5 3.5
 4 Maintain Tasks 3.5 3.5 3.5
 6 Time Analysis
 6 Install ClearTime
 Cumulative Total Unit 12 25.5 32 39 64 66

Figure 4. Worksheet to calculate unit scaling factor.

This worksheet makes successive comparisons between
the estimated and actual times required to complete an
iteration. It also shows the predicted project comple-
tion time based on each iteration’s USF value (esti-
mated effort divided by the actual effort). At the end
of each iteration, I derive the projected time by multi-

plying the original estimate by the calculated USF.
Looking across this row, note how the project slips by
a week in a day! This chart could also potentially point
to areas of architectural instability by detecting whether
USF increases over time.

